
streprogen Documentation
Release 1.0.0

Tommy O.

Sep 27, 2017

Contents

1 Project summary 3

2 Installation 5

3 Sample code 7

4 Contents 9
4.1 Getting started . 9
4.2 Advanced usage . 12
4.3 API: Classes . 16
4.4 API: Functions . 23

5 Indices and tables 27

Python Module Index 29

i

ii

streprogen Documentation, Release 1.0.0

Welcome to the documentation for streprogen, the Python strength program generator.

Contents 1

streprogen Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Project summary

Streprogen (short for Strength Program Generator) is a Python package which allows the user to easily
create dynamic, flexible strength training programs. The main features are:

• Sensible defaults: The software comes with sensible default values for all input parameters,
giving the novice strength athlete some guidance on parameter selection. The software will raise
warnings if the input parameters are unreasonable, but will still run.

• High level of customization: Every important parameter can be changed by the user. It is possible
to create long-term training programs with several layers of periodization if the user wishes to do
so.

• Simple object oriented interface: The four main classes are StaticExercise,
DynamicExercise, Day and Program.

• Pretty output: The training programs are easily saved as .txt, .html or .tex files.

3

http://www.python.org/

streprogen Documentation, Release 1.0.0

4 Chapter 1. Project summary

CHAPTER 2

Installation

1. The Anaconda distribution of Python 3.x from the Anaconda Website.

2. Run pip install streprogen in the terminal (cmd.exe on Windows) to install streprogen
from PyPi.

3. Open a Python Editor (such as Spyder, which comes with Anaconda).

4. Look at the tutorial.

5

https://www.continuum.io/downloads
http://www.python.org/
https://www.continuum.io/downloads
https://pypi.org/project/streprogen/
https://www.continuum.io/downloads

streprogen Documentation, Release 1.0.0

6 Chapter 2. Installation

CHAPTER 3

Sample code

from streprogen import Program, Day, DynamicExercise, StaticExercise

Create a 4-week program
program = Program('My first program!', duration = 4)

Create some dynamic and static exercises
bench = DynamicExercise('Bench press', 60, 80)
squats = DynamicExercise('Squats', 80, 95)
curls = StaticExercise('Curls', '3 x 12')
day = Day(exercises = [bench, squats, curls])

Add day(s) to program and render it
program.add_days(day)
program.render()
print(program)

--
Program: My first program!

Program parameters
duration: 4
reps_per_exercise: 25
avg_intensity: 75
reps_scalers: 1.2, 1, 0.8, 1
intensity_scalers: 0.9, 1, 1, 1
units: kg

--
Exercise information

Day 1
Bench press 60kg -> 80kg reps: [3, 8] weekly inc.: 7.5%
Squats 80kg -> 95kg reps: [3, 8] weekly inc.: 4.4%
Curls 3 x 12

--
Program
Week 1

7

streprogen Documentation, Release 1.0.0

Day 1
Bench press 6 x 45kg 7 x 42.5kg 7 x 42.5kg 7 x 42.5kg
Squats 6 x 60kg 7 x 57.5kg 8 x 52.5kg 8 x 52.5kg
Curls 3 x 12

Week 2
Day 1
Bench press 4 x 55kg 5 x 52.5kg 5 x 52.5kg 5 x 52.5kg 6 x 50kg
Squats 4 x 70kg 4 x 70kg 5 x 65kg 6 x 62.5kg 7 x 57.5kg
Curls 3 x 12

Week 3
Day 1
Bench press 6 x 55kg 6 x 55kg 6 x 55kg
Squats 6 x 67.5kg 6 x 67.5kg 6 x 67.5kg
Curls 3 x 12

Week 4
Day 1
Bench press 5 x 62.5kg 6 x 60kg 6 x 60kg 7 x 57.5kg
Squats 5 x 75kg 6 x 70kg 6 x 70kg 7 x 67.5kg
Curls 3 x 12

--

8 Chapter 3. Sample code

CHAPTER 4

Contents

Getting started

This tutorial was written using a Jupyter Notebook.

Minimal working example

This example shows to to use the Program, StaticExercise and Day classes to create a simple
static strength training program. The example may not look impressive, but it shows how to create a
working strength training program. The Program.render() method is very important, because it
populates all the days and weeks in the program with calculations.

In [1]: from streprogen import StaticExercise, Day, Program

Create a 3 week training program
program = Program('Minimal program', duration = 3)

Create a static exercise to a day
squats = StaticExercise('Squats', '5 x 5 @ 80kg')
day = Day(exercises = [squats])

Add the day to the program and render it
program.add_days(day)
program.render()
print(program)

--
Program: Minimal program

Program parameters
duration: 3
reps_per_exercise: 25
avg_intensity: 75
reps_scalers: 1, 0.8, 0.8
intensity_scalers: 1, 1, 0.9

9

https://jupyter.org/

streprogen Documentation, Release 1.0.0

units: kg
--
Exercise information 6

Day 1
Squats 5 x 5 @ 80kg

--
Program
Week 1
Day 1
Squats 5 x 5 @ 80kg

Week 2
Day 1
Squats 5 x 5 @ 80kg

Week 3
Day 1
Squats 5 x 5 @ 80kg

--

Using dynamic exercises

This example introduces the DynamicExercise class, and also shows how to save a program as a
.html file. Three output methods are supported:

• To txt with the to_txt() method.

• To html with the to_html() method.

• To tex with the to_tex() method.

In [2]: from streprogen import StaticExercise, DynamicExercise, Day, Program

Create a 8 week training program
program = Program('Program with dynamic exercise', duration = 8)

Create a dynamic exercise, with start weight 100, end weight 110
and repetitions between 4 and 8 (inclusive)
squats = DynamicExercise('Squats', 100, 110, min_reps = 4, max_reps = 8)
biceps = StaticExercise('Biceps', '3 x 12')
day = Day(exercises = [squats, biceps])

Add the day to the program and render it
program.add_days(day)
program.render()

Save the program as a HTML file
with open('program_with_dynamic_ex.html', 'w', encoding = 'utf-8') as file:

The table width can be controlled by passing the 'table_width' argument
file.write(program.to_html(table_width = 8))

The output file generated by the code above is:

• program_with_dynamic_ex.html

10 Chapter 4. Contents

streprogen Documentation, Release 1.0.0

Several days

This example introduces several new features:

• Controlling repetitions per exercise using reps_per_exercise.

• Controlling the average intensity (% of maximum weight) using avg_intensity.

• Controlling the rounding globally with round_to.

In [3]:
from streprogen import StaticExercise, DynamicExercise, Day, Program
Create a 6 week training program with 20 reps per exercise
program = Program('Program with dynamic exercise', duration = 8, reps_per_exercise = 20, intensity = 70, round_to = 5)

Create the first day
squats = DynamicExercise('Squats', 100, 120, min_reps = 4, max_reps = 8)
bench = DynamicExercise('Bench press', 80, 95, min_reps = 4, max_reps = 8)
dayA = Day('Day A', exercises = [squats, bench])

Create the second day
squats = DynamicExercise('Squats', 100, 110, min_reps = 4, max_reps = 8)
deadlifts = DynamicExercise('Deadlifts', 120, 135, min_reps = 4, max_reps = 8)
dayB = Day('Day B', exercises = [squats, bench])

Add the day to the program and render it
program.add_days(dayA, dayB)
program.render()

Save a .html file
with open('program__with_several_days.html', 'w', encoding = 'utf-8') as file:

The table width can be controlled by passing the 'table_width' argument
file.write(program.to_html(table_width = 8))

The output file generated by the code above is:

• program__with_several_days.html

A realistic program

Here is a realistic program that was used in real life. It’s a three-week, full body program. A function
(named f in the code below) was used to set the end_weight parameter. The StaticExercise class
can also take a function (of one parameter, the current week) as input.

In [4]: from streprogen import StaticExercise, DynamicExercise, Day, Program
import subprocess # Used to run pdflatex

Create a function to map from start weights to end weights
def f(initial):

Function to return final weight,
increasing the weights by 2% per day
return int(initial*1.02**duration)

Create a function for the static exercise
def dips_scheme(week):

if week <= 4:
return '4 x 10 @ bodyweight'

else:

4.1. Getting started 11

streprogen Documentation, Release 1.0.0

return '4 x 12 @ bodyweight + 10kg'

Create the program
duration = 8
program = Program('A realistic program', units='', round_to=2.5)

The first day
day1 = Day('Monday')
squats = DynamicExercise('Squats', 95, f(95))
chins = DynamicExercise('Chins (light)', 100, f(100))
press = DynamicExercise('Military press',50, f(50))
day1.add_exercises(squats, chins, press)

The second day
day2 = Day('Wednesday')
deadlifts = DynamicExercise('Deadlifts', 120, f(120))
bench_press = DynamicExercise('Bench', 70, f(70))
chin_ups = DynamicExercise('Chin ups', 100, f(100))
dips = StaticExercise('Dips', dips_scheme) # Notice that a function is used here
day2.add_exercises(deadlifts, bench_press, chin_ups, dips)

The third day
day3 = Day('Friday')
squats = DynamicExercise('Squats', 85, f(85))
bench = DynamicExercise('Bench (light)', 85, f(85))
rows = DynamicExercise('Rows', 65, f(85))
day3.add_exercises(squats, chins, press)

Add the days and render the program
program.add_days(day1, day2, day3)
program.render()

Save a .html file
with open('realistic_program.html', 'w', encoding = 'utf-8') as file:

file.write(program.to_html(table_width = 6))

Save a .tex file
with open('realistic_program.tex', 'w', encoding = 'utf-8') as file:

file.write(program.to_tex(table_width = 8))

Use pdflatex to create a .pdf from the .tex file
ret = subprocess.call(['pdflatex', 'realistic_program.tex'], shell=False)

The output file generated by the code above is:

• realistic_program.html

• realistic_program.tex

• realistic_program.pdf

Advanced usage

This tutorial was written using a Jupyter Notebook.

Start by importing some stuff used by the Jupyter Notebook.

12 Chapter 4. Contents

https://jupyter.org/

streprogen Documentation, Release 1.0.0

Examine the available rep to intensity mappings

The Program class has an input parameter called reps_to_intensity_func. This can be set to
whatever the user wishes (but warnings and errors might pop up if it is not a sufficiently ‘nice‘ function).

Let us look at the mapping between repetitions and intensity. Three mappings are available:

• reps_to_intensity - The default map.

• reps_to_intensity_relaxed - A more ‘relaxed‘ mapping - many reps is not as heavy any
more.

• reps_to_intensity_tight - A more ‘tight‘ mapping - many reps is heavier.

In [1]: import matplotlib.pyplot as plt
from streprogen import reps_to_intensity, reps_to_intensity_relaxed, reps_to_intensity_tight

Set up repetitions and apply all three mappings
reps = list(range(1, 12 + 1))
intensities_norm = list(map(reps_to_intensity, reps))
intensities_relaxed = list(map(reps_to_intensity_relaxed, reps))
intensities_tight = list(map(reps_to_intensity_tight, reps))

Plotting the rep to intensity mappings

In [2]: plt.figure(figsize = (8, 3))
plt.title('Relationship between repetitions and intensity')
plt.plot(reps, intensities_norm, '-o', label = 'intensities_norm')
plt.plot(reps, intensities_relaxed, '-o', label = 'intensities_relaxed')
plt.plot(reps, intensities_tight, '-o', label = 'intensities_tight')
plt.ylabel('Intensity')
plt.xlabel('Repetitions')
plt.legend(loc = 'best')
plt.grid(True)
plt.show()

4.2. Advanced usage 13

streprogen Documentation, Release 1.0.0

Plotting the rep to intensity mappings

In [3]: table_width = 6
print('reps'.ljust(8),*[str(i).ljust(table_width) for i in reps])
print('-'*90)
print('norm'.ljust(8), *[str(round(i)).ljust(table_width) for i in intensities_norm])
print('relaxed'.ljust(8),*[str(round(i)).ljust(table_width) for i in intensities_relaxed])
print('tight'.ljust(8),*[str(round(i)).ljust(table_width) for i in intensities_tight])

reps 1 2 3 4 5 6 7 8 9 10 11 12
--
norm 98 93 88 84 79 75 70 66 62 58 54 51
relaxed 98 92 86 81 76 71 66 61 56 51 46 42
tight 98 94 90 86 82 79 75 72 69 66 62 60

Creating a new rep to intensity mapping

In [4]: from functools import partial

Method 1: Using a partial function
custom_set_intensity = partial(reps_to_intensity, slope=-4.4, constant=97.5)
intensities_custom = list(map(custom_set_intensity, reps))

Method 2: Custom function from scratch
def custom_set_intensity(reps):

return 97.5 - 8 *(reps - 1) + 0.33*(reps - 1)**2

intensities_custom2 = list(map(custom_set_intensity, reps))

In [5]: plt.figure(figsize = (8, 3))
plt.title('Relationship between repetitions and intensity')
plt.plot(reps, intensities_norm, '-o', label = 'intensities_norm')
plt.plot(reps, intensities_custom, '-o', label = 'intensities_custom')
plt.plot(reps, intensities_custom2, '-o', label = 'intensities_custom2')
plt.ylabel('Intensity')
plt.xlabel('Repetitions')
plt.legend(loc = 'best')
plt.grid(True)
plt.show()

14 Chapter 4. Contents

streprogen Documentation, Release 1.0.0

Examine the available progression models

The Program class has an input parameter called progress_func. It defaults to
progression_sinusoidal(), but progression_linear() is also available. Partial func-
tions based off progression_sinusoidal() can be used, or the user can define their own
function, but it must have a signature like progression_custom(week, start_weight,
end_weight, start_week, end_week).

In [6]: from streprogen import progression_linear, progression_sinusoidal

Set up some constants
duration = 8
start, end = 100, 120

Create lists
weeks = list(range(1, duration + 1))
weight_linear = [progression_linear(week, start, end, 1, duration) for week in weeks]
weight_sine = [progression_sinusoidal(week, start, end, 1, duration) for week in weeks]

A plot of the available progression models

In [7]: plt.figure(figsize = (8, 3))
plt.title('Progression models compared')
plt.plot(weeks, weight_linear, '-o', label = 'weight_linear')
plt.plot(weeks, weight_sine, '-o', label = 'weight_sine')
plt.ylabel('Max weight')
plt.xlabel('Week')
plt.legend(loc = 'best')
plt.grid(True)
plt.show()

Scale reps and intensities

The Program class has input parameters rep_scalers and intensity_scalers.
By default a RepellentGenerator is created and the RepellentGenerator().
yield_from_domain() method is used to generate a list of factors to scale repetitions

4.2. Advanced usage 15

streprogen Documentation, Release 1.0.0

and itensities. The user can define their own list of factors too, as shown below using the
progression_sinusoidal() function.

In [8]: duration = 12

A function to create scalers for the repetitions and itensity
reps = partial(progression_sinusoidal, start_weight = 1.1, end_weight = 0.9, start_week = 1, end_week = duration, periods=3, scale=0.25, offset=2)
intensity = partial(progression_sinusoidal, start_weight = 0.95, end_weight = 1.05, start_week = 1, end_week = duration, periods=3, scale=0.04, offset=0)

Create lists
weeks = list(range(1, duration + 1))
intensities = list(map(intensity, weeks))
reps = list(map(reps, weeks))

In [9]: plt.figure(figsize = (8, 3))
plt.title('Scale factors for repetitions and intensities')
plt.plot(weeks, reps, 'o-', label = 'reps')
plt.plot(weeks, intensities, 'o-', label = 'intensities')
plt.ylabel('Multiplication factor')
plt.xlabel('Week')
plt.legend(loc = 'best')
plt.grid(True)
plt.show()

API: Classes

Brief introduction to classes

There are four classes available:

• StaticExercise: For exercises schemes such as “3 x 12”, “5 x 5 @ 80kg” or “stretch for 5
mins”. In other words, this class is merely a container for an exercise name and a string.

• DynamicExercise: For exercises where you wish to render a dynamic set/rep scheme. The
DynamicExercise class is part of what makes streprogen dynamic.

• Day: A Day class is a container for exercises associated with the same day.

16 Chapter 4. Contents

streprogen Documentation, Release 1.0.0

• Program: This is where the magic happens. The Program class is a container for
Day``s (and therefore also instances of ``StaticExercise and
DynamicExercise). The algorithms used to render the program is also contained in
the Program class. The most important method is the Program.render() method, which
renders the dynamic exercises.

The DynamicExercise class

class streprogen.DynamicExercise(name, start_weight, end_weight, min_reps=3,
max_reps=8, reps=None, avg_intensity=None,
round_to=None)

Class for dynamic exercises.

__init__(name, start_weight, end_weight, min_reps=3, max_reps=8, reps=None,
avg_intensity=None, round_to=None)

Initialize a new dynamic exercise. A dynamic exercise is rendered by the program, and the
set/rep scheme will vary from week to week.

Parameters

• name – The name of the exercise, e.g. ‘Squats’.

• start_weight – Maximum weight you can lift at the start of the pro-
gram, e.g. 80.

• end_weight – The goal weight to work towards during the program. This
should be set in relation to the duration of the training program, e.g. 90.

• min_reps – The minimum number of repetitions for this exercise, e.g. 3.

• max_reps – The maximum number of repetitions for this exercise, e.g. 8.

• reps – The number of baseline repetitions for this exercise. If this param-
eter is set, it will override the global ‘reps_per_exercise’ parameter for the
training program. The repetitions will still be scaled by the ‘reps_scalers’
parameter in the training program.

• avg_intensity – The average intensity for this exercise. If set, this will
override the ‘avg_intensity’ parameter in the training program. The intensity
will still be scaled by the ‘intensity_scalers’ parameter.

• round_to – Round the output to the closest multiple of this number, e.g.
2.5.

Returns A DynamicExercise object.

Return type DynamicExercise

Examples

>>> bench = DynamicExercise('Bench press', 100, 120, 3, 8)

weekly_growth(weeks)
Calculate the weekly growth in percentage, and rounds to one digit.

Parameters weeks – Number of weeks to calculate growth over.

4.3. API: Classes 17

streprogen Documentation, Release 1.0.0

Returns A real number such that start * growth_factor** weeks = end.

Return type growth_factor

Examples

>>> bench = DynamicExercise('Bench press', 100, 120, 3, 8)
>>> bench.weekly_growth(8)
2.3
>>> bench.weekly_growth(4)
4.7

The StaticExercise class

class streprogen.StaticExercise(name, sets_reps=‘4 x 10’)
Class for static exercises.

__init__(name, sets_reps=‘4 x 10’)
Initialize a new static exercise. A static exercise is simply a placeholder for some text.

Parameters

• name – The name of the exercise, e.g. ‘Curls’.

• sets_reps – A static set/rep scheme, e.g. ‘4 x 10’, or ‘10 minutes’. This
paramter can also be a function of one parameter, the current week. The
function must return a string for that specific week.

Returns A StaticExercise object.

Return type StaticExercise

Examples

>>> curls = StaticExercise('Curls', '4 x 10')
>>> stretching = StaticExercise('Stretching', '10 minutes')

The Day class

class streprogen.Day(name=None, exercises=None)
A day object is a container for exercises associated with the specific day.

__init__(name=None, exercises=None)
Initialize a new day object.

Parameters

• name – The name of the day, e.g. ‘Day A’. If no name is given then the day
will automatically be given a numeric name such as ‘Day 1’, ‘Day 2’, etc.

• exercises – A list of exercises. Exercises can also be associated with a
day using the ‘add_exercises’ method later on.

18 Chapter 4. Contents

streprogen Documentation, Release 1.0.0

Returns A day object.

Return type Day

Examples

>>> monday = Day(name = 'Monday')
>>> curls = StaticExercise('Curls', '3 x 12')
>>> monday.add_exercises(curls)
>>> curls in monday.static_exercises
True

add_exercises(*exercises)
Add the exercises to the day. The method will automatically infer whether a static or dynamic
exercise is passed to it.

Parameters *exercises – An unpacked tuple of exercises.

Examples

>>> monday = Day(name = 'Monday')
>>> curls = StaticExercise('Curls', '3 x 12')
>>> pulldowns = StaticExercise('Pulldowns', '4 x 10')
>>> monday.add_exercises(curls, pulldowns)
>>> curls in monday.static_exercises
True
>>> pulldowns in monday.static_exercises
True

The Program class

class streprogen.Program(name=’Untitled’, duration=8, reps_per_exercise=25,
rep_scalers=None, intensity=75, intensity_scalers=None,
units=’kg’, round_to=2.5, progress_func=None,
reps_to_intensity_func=None, min_reps_consistency=None,
minimum_percentile=0.2, go_to_min=False, verbose=False)

The program class is a container for days and exercises, along with the methods and functions
used to create training programs.

__init__(name=’Untitled’, duration=8, reps_per_exercise=25,
rep_scalers=None, intensity=75, intensity_scalers=None, units=’kg’,
round_to=2.5, progress_func=None, reps_to_intensity_func=None,
min_reps_consistency=None, minimum_percentile=0.2, go_to_min=False,
verbose=False)

Initialize a new program.

Parameters

• name – The name of the training program, e.g. ‘Tommy_August_2017’.

• duration – The duration of the training program in weeks, e.g. 8.

4.3. API: Classes 19

streprogen Documentation, Release 1.0.0

• reps_per_exercise – The baseline number of repetitions per dynamic
exercise. Typically a value in the range [20, ..., 35].

• rep_scalers – A list of factors of length ‘duration’, e.g. [1, 0.9, 1.1,
...]. For each week, the baseline number of repetitions is multiplied by the
corresponding factor, adding variation to the training program. Each factor
is typically in the range [0.7, ..., 1.3]. If None, a list of random factors is
generated.

• intensity – The baseline intensity for each dynamic exercise. The in-
tensity of an exercise for a given week is how heavy the average repetition
is compared to the expected 1RM (max weight one can lift) for that given
week. Typically a value around 75.

• intensity_scalers – A list of factors of length ‘duration’, e.g. [1,
0.95, 1.05, ...]. For each week, the baseline intensity is multiplied by the
corresponding factor, adding variation to the training program. Each factor
is typically in the range [0.95, ..., 1.05]. If None, a list of random factors is
generated.

• units – The units used for exporting and printing the program, e.g. ‘kg’.

• round_to – Round the dynamic exercise to the nearest multiple of this
parameter. Typically 2.5, 5 or 10.

• progress_func – The function used to model overall 1RM
progression in the training program. If None, the program uses
streprogen.progression_sinusoidal(). Custom func-
tions may be used, but they must implement arguments like the
streprogen.progression_sinusoidal() and streprogen.
progression_linear() functions.

• reps_to_intensity_func – The function used to model
the relationship between repetitions and intensity. If None, the
program uses streprogen.reps_to_intensity(). Cus-
tom functions may be used, and the functions streprogen.
reps_to_intensity_tight() and streprogen.
reps_to_intensity_relaxed() are available.

• min_reps_consistency – This is an advanced feature. By default,
the program will examine the dynamic exercises and try to set a minimum
repetition consistency mode. If all dynamic exercises in the program use the
same repetition range, it will be set to ‘weekly’. If all dynamic exercises in
each day use the same repetition range, it will be set to ‘daily’. If neither, it
will be set to ‘exercise’.

The minimum reps consistency mode tells the program how often it should
draw a new random value for the minimum repetition to work up to. If
‘min_reps_consistency’ is ‘weekly’ and the ‘go_to_min’ parameter is set to
True, you can expect that every exercise will work up to the same minimum
number of repetitions.

The ‘min_reps_consistency’ argument will override the program default. If,
for example, every exercise is set to the repetition range 3-8 but you wish to
work up to different minimum values, set ‘min_reps_consistency’ to ‘daily’
or ‘exercise’.

20 Chapter 4. Contents

streprogen Documentation, Release 1.0.0

• minimum_percentile – This is an advanced feature. To protect the
athlete against often working up to heavy weights, the repetition range is
“clipped” randomly. A repetition range 1-8 might be clipped to, say, 3-8,
2-8 or 1-8. If clipped to 3-8, the repetitions are drawn from [3, ..., 8] instead
of [1, ..., 8].

The ‘minimum_percentile’ determines the percentile of the repetition range
to clip away. If 0, no clipping occurs. If 0.5, half the repetition range could
potentially be clipped away. How often the range is clipped and a new mini-
mum repetition value is computed is determined by the minimum repetition
consistency mode, which may be controlled by the ‘minimum_percentile’
argument.

• go_to_min – This is an advanced feature. Whether or not to force the
program to work up to the minimum repetition possible for a given dynamic
exercise. Consider a program where ‘minimum_percentile’ is 0.2, and a
dynamic exercise has a repetition range 1-8. The program will drawn rep-
etitions in ranges 1-8, 2-8 or 3-8. If ‘go_to_min’ is True, the program will
be forced to work up to 1, 2 or 3 repetitions respectively. If ‘go_to_min’
is False, the same range will be used, but the program need not go to the
minimum number of repeitions.

• verbose – If True, information will be outputted as the program is created.

Returns A Program instance.

Return type Program

Examples

>>> program = Program('My training program')
>>> program._rendered
False

add_days(*days)
Add one or several days to the program.

Parameters *days – Unpacked tuple containing streprogen.Day instances.

Examples

>>> program = Program('My training program')
>>> day1, day2 = Day(), Day()
>>> program.add_days(day1, day2)

render(validate=True)
Render the training program to perform the calculations. The program can be rendered
several times to produce new information given the same input parameters.

Parameters validate – Boolean that indicates whether or not to run a valida-
tion heurestic on the program before rendering. The validation will warn the
user if inputs seem unreasonable.

4.3. API: Classes 21

streprogen Documentation, Release 1.0.0

static repstring_penalty(reps, intensities, desired_reps, desired_intensity, mini-
mum_rep)

Penalty function which calculates how “bad” a set of reps and intensities is, compared to the
desired repetitions, the desired intensity level and the minimum repetitions. Advanced users
may substitute this function for their own version.

Parameters

• reps – A list of repetitions (sorted), e.g. [8, 6, 5, 2].

• intensities – A list of intensities corresponding to the repetitions, e.g.
[64.7, 72.3, 76.25, 88.7].

• desired_reps – Desired number of repetitions in total, e.g. 25.

• desired_intensity – The desired average intensity, e.g. 75.

• minimum_rep – The minimum repetition which is allowed, e.g. 2.

Returns A penalty, a positive real number.

Return type float

Examples

>>> desired_reps = 25
>>> desired_intensity = 75
>>> minimum_rep = 1
>>> high = Program().repstring_penalty([8, 8, 8], [60, 60, 60],
... desired_reps, desired_intensity,
... minimum_rep)
>>> low = Program().repstring_penalty([8, 6, 5, 4, 2], [64, 72,
→˓75, 80, 88],
... desired_reps, desired_intensity,
... minimum_rep)
>>> high > low
True

to_html(table_width=5)
Write the program information to HTML code, which can be saved, printed and brought to
the gym.

Parameters table_width – The table with of the HTML code.

Returns HTML code.

Return type string

to_tex(text_size=’large’, table_width=5)
Write the program information to a .tex file, which can be rendered to .pdf running pdflatex.
The program can then be printed and brought to the gym.

Parameters

• text_size – The tex text size, e.g. ‘small’, ‘normalsize’, ‘large’, ‘Large’
or ‘LARGE’.

• table_width – The table with of the .tex code.

Returns Program as tex.

22 Chapter 4. Contents

streprogen Documentation, Release 1.0.0

Return type string

to_txt(verbose=False)
Write the program information to text, which can be printed in a terminal.

Parameters verbose – If True, more information is shown.

Returns Program as text.

Return type string

API: Functions

Functions documented here.

Functions modeling reps/intensity mapping

reps_to_intensity

streprogen.reps_to_intensity(reps, slope=-4.8, constant=97.5, quadratic=True)
A function mapping from repetitions in the range 1 to 12 to intensities in the range 0 to 100.

Parameters

• reps – The number of repetitions to map to the intensity range.

• slope – Slope for the linear function.

• constant – Constant for the linear function

• quadratic – If ‘True’, add a slight quadratic offset.

Returns An intensity value in the range from 0 to 100.

Return type intensity

Examples

>>> reps_to_intensity(5, slope = -5, constant = 100, quadratic =
→˓False)
80

>>> reps_to_intensity(8, slope = -5, constant = 100, quadratic = True)
67.45

>>> reps_to_intensity(8, slope = -5, constant = 100, quadratic =
→˓False)
65

4.4. API: Functions 23

streprogen Documentation, Release 1.0.0

Functions modeling progression

progression_linear

streprogen.progression_linear(week, start_weight, end_weight, start_week,
end_week)

A linear progression function going through the points (‘start_week’, ‘start_weight’) and
(‘end_week’, ‘end_weight’), evaluated in ‘week’.

Parameters

• week – The week to evaluate the linear function at.

• start_weight – The weight at ‘start_week’.

• end_weight – The weight at ‘end_week’.

• start_week – The number of the first week, typically 1.

• end_week – The number of the final week, e.g. 8.

Returns The weight at ‘week’.

Return type weight

Examples

>>> progression_linear(week = 2, start_weight = 100, end_weight = 120,
... start_week = 1, end_week = 3)
110.0

>>> progression_linear(3, 100, 140, 1, 5)
120.0

progression_sinusoidal

streprogen.progression_sinusoidal(week, start_weight, end_weight, start_week,
end_week, periods=2, scale=0.025, offset=0)

A sinusoidal progression function going through the points (‘start_week’, ‘start_weight’) and
(‘end_week’, ‘end_weight’), evaluated in ‘week’. This function calls a linear progression function
and multiplies it by a sinusoid.

Parameters

• week – The week to evaluate the linear function at.

• start_weight – The weight at ‘start_week’.

• end_weight – The weight at ‘end_week’.

• start_week – The number of the first week, typically 1.

• end_week – The number of the final week, e.g. 8.

• periods – Number of sinusoidal periods in the time range.

• scale – The scale (amplitude) of the sinusoidal term.

24 Chapter 4. Contents

streprogen Documentation, Release 1.0.0

• offset – The offset (shift) of the sinusoid.

Returns The weight at ‘week’.

Return type weight

Examples

>>> progression_sinusoidal(1, 100, 120, 1, 8)
100.0
>>> progression_sinusoidal(8, 100, 120, 1, 8)
120.0
>>> progression_sinusoidal(4, 100, 120, 1, 8)
106.44931454758678

The RepellentGenerator

RepellentGenerator

class streprogen.RepellentGenerator(domain, probability_func=None, gener-
ated=None)

Generates objects from a domain, each time an object is drawn, the probability of it being drawn
again is determined by the probability function.

__init__(domain, probability_func=None, generated=None)
Initialize a RepellentGenerator, which is a generator where when an object is generated, the
probability of it begin generated changes.

Parameters

• domain – A list of objects to generate from, e.g. [1, 2, 3].

• probability_func – A decreasing probability function, e.g. lambda x:
1 / 2**x.

• generated – A user specified dictionary of the form {element1: num1,
element2: num2, ...} where num1, num2, ... are the initial states descriping
how many times the elements element1, element2, ... have been generated.
This argument changes the initial probability distribution.

Returns A RepellentGenerator object.

Return type RepellentGenerator

Examples

>>> domain = [1, 2, 3]
>>> generator = RepellentGenerator(domain)
>>> generator.generate_one() in domain
True

generate_one()
Generate a single element.

4.4. API: Functions 25

streprogen Documentation, Release 1.0.0

Returns An element from the domain.

Return type element

Examples

>>> generator = RepellentGenerator(['a', 'b'])
>>> gen_item = generator.generate_one()
>>> gen_item in ['a', 'b']
True

yield_from_domain(num=1)
Yield ‘num’ elements from the domain.

Yields A sequence of elements from the domain.

Examples

>>> domain = ['a', 1]
>>> generator = RepellentGenerator(domain)
>>> for element in generator.yield_from_domain(3):
... print(element in domain)
True
True
True

26 Chapter 4. Contents

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

27

streprogen Documentation, Release 1.0.0

28 Chapter 5. Indices and tables

Python Module Index

s
streprogen, 23

29

streprogen Documentation, Release 1.0.0

30 Python Module Index

Index

Symbols
__init__() (streprogen.Day method), 18
__init__() (streprogen.DynamicExercise method),

17
__init__() (streprogen.Program method), 19
__init__() (streprogen.RepellentGenerator

method), 25
__init__() (streprogen.StaticExercise method), 18

A
add_days() (streprogen.Program method), 21
add_exercises() (streprogen.Day method), 19

D
Day (class in streprogen), 18
DynamicExercise (class in streprogen), 17

G
generate_one() (streprogen.RepellentGenerator

method), 25

P
Program (class in streprogen), 19
progression_linear() (in module streprogen), 24
progression_sinusoidal() (in module streprogen),

24

R
render() (streprogen.Program method), 21
RepellentGenerator (class in streprogen), 25
reps_to_intensity() (in module streprogen), 23
repstring_penalty() (streprogen.Program static

method), 21

S
StaticExercise (class in streprogen), 18
streprogen (module), 17, 23

T
to_html() (streprogen.Program method), 22

to_tex() (streprogen.Program method), 22
to_txt() (streprogen.Program method), 23

W
weekly_growth() (streprogen.DynamicExercise

method), 17

Y
yield_from_domain() (strepro-

gen.RepellentGenerator method), 26

31

	Project summary
	Installation
	Sample code
	Contents
	Getting started
	Advanced usage
	API: Classes
	API: Functions

	Indices and tables
	Python Module Index

