

Streprogen Documentation

Welcome to the documentation for streprogen, the Python strength program generator.

Project summary

Streprogen (short for Strength Program Generator) is a Python [http://www.python.org/]
package which allows the user to easily create dynamic, flexible
strength training programs. The main features are:

	Sensible defaults: The software comes with sensible default values for all input parameters,
giving the novice strength athlete some guidance on parameter selection.
The software will raise warnings if the input parameters are unreasonable, but will still run.

	High level of customization: Every important parameter can be changed by the user.
It is possible to create long-term training programs with several layers of periodization
if the user wishes to do so.

	Simple object oriented interface: The four main classes are StaticExercise, DynamicExercise,
Day and Program.

	Pretty output: The training programs are easily saved as .txt, .html or .tex files.

Installation

	The Anaconda [https://www.continuum.io/downloads] distribution of Python [http://www.python.org/] 3.x from the Anaconda [https://www.continuum.io/downloads] Website.

	Run pip install streprogen in the terminal (cmd.exe on Windows)
to install streprogen from PyPi [https://pypi.org/project/streprogen/].

	Open a Python Editor (such as Spyder, which comes with Anaconda [https://www.continuum.io/downloads]).

	Look at the tutorial.

Sample code

from streprogen import Program, Day, DynamicExercise, StaticExercise

Create a 4-week program
program = Program('My first program!', duration = 4)

Create some dynamic and static exercises
bench = DynamicExercise('Bench press', 60, 80)
squats = DynamicExercise('Squats', 80, 95)
curls = StaticExercise('Curls', '3 x 12')
day = Day(exercises = [bench, squats, curls])

Add day(s) to program and render it
program.add_days(day)
program.render()
print(program)

--
Program: My first program!

Program parameters
 duration: 4
 reps_per_exercise: 25
 avg_intensity: 75
 reps_scalers: 1.2, 1, 0.8, 1
 intensity_scalers: 0.9, 1, 1, 1
 units: kg
--
Exercise information
 Day 1
 Bench press 60kg -> 80kg reps: [3, 8] weekly inc.: 7.5%
 Squats 80kg -> 95kg reps: [3, 8] weekly inc.: 4.4%
 Curls 3 x 12
--
Program
 Week 1
 Day 1
 Bench press 6 x 45kg 7 x 42.5kg 7 x 42.5kg 7 x 42.5kg
 Squats 6 x 60kg 7 x 57.5kg 8 x 52.5kg 8 x 52.5kg
 Curls 3 x 12

 Week 2
 Day 1
 Bench press 4 x 55kg 5 x 52.5kg 5 x 52.5kg 5 x 52.5kg 6 x 50kg
 Squats 4 x 70kg 4 x 70kg 5 x 65kg 6 x 62.5kg 7 x 57.5kg
 Curls 3 x 12

 Week 3
 Day 1
 Bench press 6 x 55kg 6 x 55kg 6 x 55kg
 Squats 6 x 67.5kg 6 x 67.5kg 6 x 67.5kg
 Curls 3 x 12

 Week 4
 Day 1
 Bench press 5 x 62.5kg 6 x 60kg 6 x 60kg 7 x 57.5kg
 Squats 5 x 75kg 6 x 70kg 6 x 70kg 7 x 67.5kg
 Curls 3 x 12

--

Contents

	Getting started
	Minimal working example

	Using dynamic exercises

	Several days

	A realistic program

	Advanced usage
	Examine the available rep to intensity mappings

	Examine the available progression models

	Scale reps and intensities

	API: Classes
	Brief introduction to classes

	The DynamicExercise class

	The StaticExercise class

	The Day class

	The Program class

	API: Functions
	Functions modeling reps/intensity mapping

	Functions modeling progression

	The RepellentGenerator

Indices and tables

	Index

	Module Index

	Search Page

Getting started

This tutorial was written using a Jupyter
Notebook [https://jupyter.org/].

Minimal working example

This example shows to to use the Program,
StaticExercise and Day classes to create a simple static strength training program. The example may not look impressive, but it shows how to create a working strength training program. The Program.render() method is very important, because it populates all the days and weeks in the program with calculations.

In [1]:

from streprogen import StaticExercise, Day, Program

Create a 3 week training program
program = Program('Minimal program', duration = 3)

Create a static exercise to a day
squats = StaticExercise('Squats', '5 x 5 @ 80kg')
day = Day(exercises = [squats])

Add the day to the program and render it
program.add_days(day)
program.render()
print(program)

--
Program: Minimal program

Program parameters
 duration: 3
 reps_per_exercise: 25
 avg_intensity: 75
 reps_scalers: 1, 0.8, 0.8
 intensity_scalers: 1, 1, 0.9
 units: kg
--
Exercise information 6
 Day 1
 Squats 5 x 5 @ 80kg
--
Program
 Week 1
 Day 1
 Squats 5 x 5 @ 80kg

 Week 2
 Day 1
 Squats 5 x 5 @ 80kg

 Week 3
 Day 1
 Squats 5 x 5 @ 80kg

--

Using dynamic exercises

This example introduces the DynamicExercise class, and also shows how to save a program as a .html file. Three output methods are supported:

	To txt with the to_txt() method.

	To html with the to_html() method.

	To tex with the to_tex() method.

In [2]:

from streprogen import StaticExercise, DynamicExercise, Day, Program

Create a 8 week training program
program = Program('Program with dynamic exercise', duration = 8)

Create a dynamic exercise, with start weight 100, end weight 110
and repetitions between 4 and 8 (inclusive)
squats = DynamicExercise('Squats', 100, 110, min_reps = 4, max_reps = 8)
biceps = StaticExercise('Biceps', '3 x 12')
day = Day(exercises = [squats, biceps])

Add the day to the program and render it
program.add_days(day)
program.render()

Save the program as a HTML file
with open('program_with_dynamic_ex.html', 'w', encoding = 'utf-8') as file:
 # The table width can be controlled by passing the 'table_width' argument
 file.write(program.to_html(table_width = 8))

The output file generated by the code above is:

	program_with_dynamic_ex.html

Several days

This example introduces several new features:

	Controlling repetitions per exercise using reps_per_exercise.

	Controlling the average intensity (% of maximum weight) using
avg_intensity.

	Controlling the rounding globally with round_to.

In [3]:

from streprogen import StaticExercise, DynamicExercise, Day, Program
Create a 6 week training program with 20 reps per exercise
program = Program('Program with dynamic exercise', duration = 8, reps_per_exercise = 20, intensity = 70, round_to = 5)

Create the first day
squats = DynamicExercise('Squats', 100, 120, min_reps = 4, max_reps = 8)
bench = DynamicExercise('Bench press', 80, 95, min_reps = 4, max_reps = 8)
dayA = Day('Day A', exercises = [squats, bench])

Create the second day
squats = DynamicExercise('Squats', 100, 110, min_reps = 4, max_reps = 8)
deadlifts = DynamicExercise('Deadlifts', 120, 135, min_reps = 4, max_reps = 8)
dayB = Day('Day B', exercises = [squats, bench])

Add the day to the program and render it
program.add_days(dayA, dayB)
program.render()

Save a .html file
with open('program__with_several_days.html', 'w', encoding = 'utf-8') as file:
 # The table width can be controlled by passing the 'table_width' argument
 file.write(program.to_html(table_width = 8))

The output file generated by the code above is:

	program__with_several_days.html

A realistic program

Here is a realistic program that was used in real life. It’s a three-week, full body program. A function (named f in the code below) was used to set the end_weight parameter. The StaticExercise class can also take a function (of one parameter, the current week) as input.

In [4]:

from streprogen import StaticExercise, DynamicExercise, Day, Program
import subprocess # Used to run pdflatex

Create a function to map from start weights to end weights
def f(initial):
 # Function to return final weight,
 # increasing the weights by 2% per day
 return int(initial*1.02**duration)

Create a function for the static exercise
def dips_scheme(week):
 if week <= 4:
 return '4 x 10 @ bodyweight'
 else:
 return '4 x 12 @ bodyweight + 10kg'

Create the program
duration = 8
program = Program('A realistic program', units='', round_to=2.5)

The first day
day1 = Day('Monday')
squats = DynamicExercise('Squats', 95, f(95))
chins = DynamicExercise('Chins (light)', 100, f(100))
press = DynamicExercise('Military press',50, f(50))
day1.add_exercises(squats, chins, press)

The second day
day2 = Day('Wednesday')
deadlifts = DynamicExercise('Deadlifts', 120, f(120))
bench_press = DynamicExercise('Bench', 70, f(70))
chin_ups = DynamicExercise('Chin ups', 100, f(100))
dips = StaticExercise('Dips', dips_scheme) # Notice that a function is used here
day2.add_exercises(deadlifts, bench_press, chin_ups, dips)

The third day
day3 = Day('Friday')
squats = DynamicExercise('Squats', 85, f(85))
bench = DynamicExercise('Bench (light)', 85, f(85))
rows = DynamicExercise('Rows', 65, f(85))
day3.add_exercises(squats, chins, press)

Add the days and render the program
program.add_days(day1, day2, day3)
program.render()

Save a .html file
with open('realistic_program.html', 'w', encoding = 'utf-8') as file:
 file.write(program.to_html(table_width = 6))

Save a .tex file
with open('realistic_program.tex', 'w', encoding = 'utf-8') as file:
 file.write(program.to_tex(table_width = 8))

Use pdflatex to create a .pdf from the .tex file
ret = subprocess.call(['pdflatex', 'realistic_program.tex'], shell=False)

The output file generated by the code above is:

	realistic_program.html

	realistic_program.tex

	realistic_program.pdf

Advanced usage

This tutorial was written using a Jupyter
Notebook [https://jupyter.org/].

Start by importing some stuff used by the Jupyter Notebook.

Examine the available rep to intensity mappings

The Program class has an input parameter called reps_to_intensity_func.
This can be set to whatever the user wishes (but warnings and errors might pop up if it is not a sufficiently `nice` function).

Let us look at the mapping between repetitions and intensity.
Three mappings are available:

	reps_to_intensity - The default map.

	reps_to_intensity_relaxed - A more `relaxed` mapping - many reps is not as heavy any more.

	reps_to_intensity_tight - A more `tight` mapping - many reps is heavier.

In [1]:

import matplotlib.pyplot as plt
from streprogen import reps_to_intensity, reps_to_intensity_relaxed, reps_to_intensity_tight

Set up repetitions and apply all three mappings
reps = list(range(1, 12 + 1))
intensities_norm = list(map(reps_to_intensity, reps))
intensities_relaxed = list(map(reps_to_intensity_relaxed, reps))
intensities_tight = list(map(reps_to_intensity_tight, reps))

Plotting the rep to intensity mappings

In [2]:

plt.figure(figsize = (8, 3))
plt.title('Relationship between repetitions and intensity')
plt.plot(reps, intensities_norm, '-o', label = 'intensities_norm')
plt.plot(reps, intensities_relaxed, '-o', label = 'intensities_relaxed')
plt.plot(reps, intensities_tight, '-o', label = 'intensities_tight')
plt.ylabel('Intensity')
plt.xlabel('Repetitions')
plt.legend(loc = 'best')
plt.grid(True)
plt.show()

[image: ../_images/jupyter_notebooks_advanced_8_0.png]

Plotting the rep to intensity mappings

In [3]:

table_width = 6
print('reps'.ljust(8),*[str(i).ljust(table_width) for i in reps])
print('-'*90)
print('norm'.ljust(8), *[str(round(i)).ljust(table_width) for i in intensities_norm])
print('relaxed'.ljust(8),*[str(round(i)).ljust(table_width) for i in intensities_relaxed])
print('tight'.ljust(8),*[str(round(i)).ljust(table_width) for i in intensities_tight])

reps 1 2 3 4 5 6 7 8 9 10 11 12
--
norm 98 93 88 84 79 75 70 66 62 58 54 51
relaxed 98 92 86 81 76 71 66 61 56 51 46 42
tight 98 94 90 86 82 79 75 72 69 66 62 60

Creating a new rep to intensity mapping

In [4]:

from functools import partial

Method 1: Using a partial function
custom_set_intensity = partial(reps_to_intensity, slope=-4.4, constant=97.5)
intensities_custom = list(map(custom_set_intensity, reps))

Method 2: Custom function from scratch
def custom_set_intensity(reps):
 return 97.5 - 8 *(reps - 1) + 0.33*(reps - 1)**2

intensities_custom2 = list(map(custom_set_intensity, reps))

In [5]:

plt.figure(figsize = (8, 3))
plt.title('Relationship between repetitions and intensity')
plt.plot(reps, intensities_norm, '-o', label = 'intensities_norm')
plt.plot(reps, intensities_custom, '-o', label = 'intensities_custom')
plt.plot(reps, intensities_custom2, '-o', label = 'intensities_custom2')
plt.ylabel('Intensity')
plt.xlabel('Repetitions')
plt.legend(loc = 'best')
plt.grid(True)
plt.show()

[image: ../_images/jupyter_notebooks_advanced_13_0.png]

Examine the available progression models

The Program class has an input parameter called progress_func.
It defaults to progression_sinusoidal(), but progression_linear() is also available. Partial functions based off progression_sinusoidal() can be used, or the user can define their own function, but it must have a signature like progression_custom(week, start_weight, end_weight, start_week, end_week).

In [6]:

from streprogen import progression_linear, progression_sinusoidal

Set up some constants
duration = 8
start, end = 100, 120

Create lists
weeks = list(range(1, duration + 1))
weight_linear = [progression_linear(week, start, end, 1, duration) for week in weeks]
weight_sine = [progression_sinusoidal(week, start, end, 1, duration) for week in weeks]

A plot of the available progression models

In [7]:

plt.figure(figsize = (8, 3))
plt.title('Progression models compared')
plt.plot(weeks, weight_linear, '-o', label = 'weight_linear')
plt.plot(weeks, weight_sine, '-o', label = 'weight_sine')
plt.ylabel('Max weight')
plt.xlabel('Week')
plt.legend(loc = 'best')
plt.grid(True)
plt.show()

[image: ../_images/jupyter_notebooks_advanced_18_0.png]

Scale reps and intensities

The Program class has input parameters rep_scalers and intensity_scalers. By default a RepellentGenerator is created and the RepellentGenerator().yield_from_domain() method is used to generate a list of factors to scale repetitions and itensities. The user can define their own list of factors too, as shown below using the progression_sinusoidal() function.

In [8]:

duration = 12

A function to create scalers for the repetitions and itensity
reps = partial(progression_sinusoidal, start_weight = 1.1, end_weight = 0.9, start_week = 1, end_week = duration, periods=3, scale=0.25, offset=2)
intensity = partial(progression_sinusoidal, start_weight = 0.95, end_weight = 1.05, start_week = 1, end_week = duration, periods=3, scale=0.04, offset=0)

Create lists
weeks = list(range(1, duration + 1))
intensities = list(map(intensity, weeks))
reps = list(map(reps, weeks))

In [9]:

plt.figure(figsize = (8, 3))
plt.title('Scale factors for repetitions and intensities')
plt.plot(weeks, reps, 'o-', label = 'reps')
plt.plot(weeks, intensities, 'o-', label = 'intensities')
plt.ylabel('Multiplication factor')
plt.xlabel('Week')
plt.legend(loc = 'best')
plt.grid(True)
plt.show()

[image: ../_images/jupyter_notebooks_advanced_22_0.png]

API: Classes

Brief introduction to classes

There are four classes available:

	StaticExercise: For exercises schemes such as “3 x 12”, “5 x 5 @ 80kg” or “stretch for 5 mins”.
In other words, this class is merely a container for an exercise name and a string.

	DynamicExercise: For exercises where you wish to render a dynamic set/rep scheme.
The DynamicExercise class is part of what makes streprogen dynamic.

	Day: A Day class is a container for exercises associated with the same day.

	Program: This is where the magic happens. The Program class is a container
for Day``s (and therefore also instances of ``StaticExercise and DynamicExercise).
The algorithms used to render the program is also contained in the Program
class. The most important method is the Program.render() method, which
renders the dynamic exercises.

The DynamicExercise class

	
class streprogen.DynamicExercise(name, start_weight, end_weight, min_reps=3, max_reps=8, reps=None, avg_intensity=None, round_to=None)

	Class for dynamic exercises.

	
__init__(name, start_weight, end_weight, min_reps=3, max_reps=8, reps=None, avg_intensity=None, round_to=None)

	Initialize a new dynamic exercise. A dynamic exercise is rendered by
the program, and the set/rep scheme will vary from week to week.

	Parameters:	
	name – The name of the exercise, e.g. ‘Squats’.

	start_weight – Maximum weight you can lift at the start of the program, e.g. 80.

	end_weight – The goal weight to work towards during the program. This should be
set in relation to the duration of the training program, e.g. 90.

	min_reps – The minimum number of repetitions for this exercise, e.g. 3.

	max_reps – The maximum number of repetitions for this exercise, e.g. 8.

	reps – The number of baseline repetitions for this exercise. If this
parameter is set, it will override the global ‘reps_per_exercise’
parameter for the training program. The repetitions will still
be scaled by the ‘reps_scalers’ parameter in the training program.

	avg_intensity – The average intensity for this exercise. If set, this will
override the ‘avg_intensity’ parameter in the training program.
The intensity will still be scaled by the ‘intensity_scalers’
parameter.

	round_to – Round the output to the closest multiple of this number, e.g. 2.5.

	Returns:	A DynamicExercise object.

	Return type:	DynamicExercise

Examples

>>> bench = DynamicExercise('Bench press', 100, 120, 3, 8)

	
weekly_growth(weeks)

	Calculate the weekly growth in percentage, and rounds
to one digit.

	Parameters:	weeks – Number of weeks to calculate growth over.

	Returns:	A real number such that start * growth_factor** weeks = end.

	Return type:	growth_factor

Examples

>>> bench = DynamicExercise('Bench press', 100, 120, 3, 8)
>>> bench.weekly_growth(8)
2.3
>>> bench.weekly_growth(4)
4.7

The StaticExercise class

	
class streprogen.StaticExercise(name, sets_reps='4 x 10')

	Class for static exercises.

	
__init__(name, sets_reps='4 x 10')

	Initialize a new static exercise. A static exercise
is simply a placeholder for some text.

	Parameters:	
	name – The name of the exercise, e.g. ‘Curls’.

	sets_reps – A static set/rep scheme, e.g. ‘4 x 10’, or ‘10 minutes’.
This paramter can also be a function of one parameter,
the current week. The function must return a string
for that specific week.

	Returns:	A StaticExercise object.

	Return type:	StaticExercise

Examples

>>> curls = StaticExercise('Curls', '4 x 10')
>>> stretching = StaticExercise('Stretching', '10 minutes')

The Day class

	
class streprogen.Day(name=None, exercises=None)

	A day object is a container for exercises associated with the specific day.

	
__init__(name=None, exercises=None)

	Initialize a new day object.

	Parameters:	
	name – The name of the day, e.g. ‘Day A’. If no name is given then the day
will automatically be given a numeric name such as ‘Day 1’, ‘Day 2’, etc.

	exercises – A list of exercises. Exercises can also be associated with a day using
the ‘add_exercises’ method later on.

	Returns:	A day object.

	Return type:	Day

Examples

>>> monday = Day(name = 'Monday')
>>> curls = StaticExercise('Curls', '3 x 12')
>>> monday.add_exercises(curls)
>>> curls in monday.static_exercises
True

	
add_exercises(*exercises)

	Add the exercises to the day. The method will automatically infer
whether a static or dynamic exercise is passed to it.

	Parameters:	*exercises – An unpacked tuple of exercises.

Examples

>>> monday = Day(name = 'Monday')
>>> curls = StaticExercise('Curls', '3 x 12')
>>> pulldowns = StaticExercise('Pulldowns', '4 x 10')
>>> monday.add_exercises(curls, pulldowns)
>>> curls in monday.static_exercises
True
>>> pulldowns in monday.static_exercises
True

The Program class

	
class streprogen.Program(name='Untitled', duration=8, reps_per_exercise=25, rep_scalers=None, intensity=75, intensity_scalers=None, units='kg', round_to=2.5, progress_func=None, reps_to_intensity_func=None, min_reps_consistency=None, minimum_percentile=0.2, go_to_min=False, verbose=False)

	The program class is a container for days and exercises,
along with the methods and functions used to create training programs.

	
__init__(name='Untitled', duration=8, reps_per_exercise=25, rep_scalers=None, intensity=75, intensity_scalers=None, units='kg', round_to=2.5, progress_func=None, reps_to_intensity_func=None, min_reps_consistency=None, minimum_percentile=0.2, go_to_min=False, verbose=False)

	Initialize a new program.

	Parameters:	
	name – The name of the training program, e.g. ‘Tommy_August_2017’.

	duration – The duration of the training program in weeks, e.g. 8.

	reps_per_exercise – The baseline number of repetitions per dynamic exercise.
Typically a value in the range [20, ..., 35].

	rep_scalers – A list of factors of length ‘duration’, e.g. [1, 0.9, 1.1, ...].
For each week, the baseline number of repetitions is multiplied
by the corresponding factor, adding variation to the training
program. Each factor is typically in the range [0.7, ..., 1.3].
If None, a list of random factors is generated.

	intensity – The baseline intensity for each dynamic exercise. The intensity
of an exercise for a given week is how heavy the average
repetition is compared to the expected 1RM (max weight one can
lift) for that given week. Typically a value around 75.

	intensity_scalers – A list of factors of length ‘duration’, e.g. [1, 0.95, 1.05, ...].
For each week, the baseline intensity is multiplied by the
corresponding factor, adding variation to the training
program. Each factor is typically in the range [0.95, ..., 1.05].
If None, a list of random factors is generated.

	units – The units used for exporting and printing the program, e.g. ‘kg’.

	round_to – Round the dynamic exercise to the nearest multiple of this
parameter. Typically 2.5, 5 or 10.

	progress_func – The function used to model overall 1RM progression in the
training program. If None, the program uses
streprogen.progression_sinusoidal(). Custom functions
may be used, but they must implement arguments like the
streprogen.progression_sinusoidal() and
streprogen.progression_linear() functions.

	reps_to_intensity_func – The function used to model the relationship between repetitions
and intensity. If None, the program uses
streprogen.reps_to_intensity().
Custom functions may be used,
and the functions
streprogen.reps_to_intensity_tight()
and
streprogen.reps_to_intensity_relaxed()
are available.

	min_reps_consistency – This is an advanced feature. By default, the program will
examine the dynamic exercises and try to set a minimum
repetition consistency mode. If all dynamic exercises in the
program use the same repetition range, it will be set to
‘weekly’. If all dynamic exercises in each day use the same
repetition range, it will be set to ‘daily’.
If neither, it will be set to ‘exercise’.

The minimum reps consistency mode tells the program how often
it should draw a new random value for the minimum repetition
to work up to. If ‘min_reps_consistency’ is ‘weekly’ and
the ‘go_to_min’ parameter is set to True, you can expect that
every exercise will work up to the same minimum number of
repetitions.

The ‘min_reps_consistency’ argument will override the program
default. If, for example, every exercise is set to the
repetition range 3-8 but you wish to work up to different
minimum values, set ‘min_reps_consistency’ to ‘daily’ or
‘exercise’.

	minimum_percentile – This is an advanced feature. To protect the athlete against
often working up to heavy weights, the repetition range is
“clipped” randomly. A repetition range 1-8 might be clipped
to, say, 3-8, 2-8 or 1-8. If clipped to 3-8, the repetitions
are drawn from [3, ..., 8] instead of [1, ..., 8].

The ‘minimum_percentile’ determines the percentile of the
repetition range to clip away. If 0, no clipping occurs.
If 0.5, half the repetition range could potentially be clipped
away. How often the range is clipped and a new minimum
repetition value is computed is determined by the minimum
repetition consistency mode, which may be controlled by the
‘minimum_percentile’ argument.

	go_to_min – This is an advanced feature.
Whether or not to force the program to work up to the minimum
repetition possible for a given dynamic exercise. Consider a
program where ‘minimum_percentile’ is 0.2, and a dynamic exercise
has a repetition range 1-8. The program will drawn repetitions
in ranges 1-8, 2-8 or 3-8. If ‘go_to_min’ is True, the program
will be forced to work up to 1, 2 or 3 repetitions respectively.
If ‘go_to_min’ is False, the same range will be used, but the
program need not go to the minimum number of repeitions.

	verbose – If True, information will be outputted as the program is created.

	Returns:	A Program instance.

	Return type:	Program

Examples

>>> program = Program('My training program')
>>> program._rendered
False

	
add_days(*days)

	Add one or several days to the program.

	Parameters:	*days – Unpacked tuple containing
streprogen.Day instances.

Examples

>>> program = Program('My training program')
>>> day1, day2 = Day(), Day()
>>> program.add_days(day1, day2)

	
render(validate=True)

	Render the training program to perform the calculations.
The program can be rendered several times to produce new
information given the same input parameters.

	Parameters:	validate – Boolean that indicates whether or not to run a validation
heurestic on the program before rendering. The validation
will warn the user if inputs seem unreasonable.

	
static repstring_penalty(reps, intensities, desired_reps, desired_intensity, minimum_rep)

	Penalty function which calculates how “bad” a set of
reps and intensities is, compared to the desired repetitions,
the desired intensity level and the minimum repetitions.
Advanced users may substitute this function for their own version.

	Parameters:	
	reps – A list of repetitions (sorted), e.g. [8, 6, 5, 2].

	intensities – A list of intensities corresponding to the repetitions,
e.g. [64.7, 72.3, 76.25, 88.7].

	desired_reps – Desired number of repetitions in total, e.g. 25.

	desired_intensity – The desired average intensity, e.g. 75.

	minimum_rep – The minimum repetition which is allowed, e.g. 2.

	Returns:	A penalty, a positive real number.

	Return type:	float

Examples

>>> desired_reps = 25
>>> desired_intensity = 75
>>> minimum_rep = 1
>>> high = Program().repstring_penalty([8, 8, 8], [60, 60, 60],
... desired_reps, desired_intensity,
... minimum_rep)
>>> low = Program().repstring_penalty([8, 6, 5, 4, 2], [64, 72, 75, 80, 88],
... desired_reps, desired_intensity,
... minimum_rep)
>>> high > low
True

	
to_html(table_width=5)

	Write the program information to HTML code, which can be saved,
printed and brought to the gym.

	Parameters:	table_width – The table with of the HTML code.

	Returns:	HTML code.

	Return type:	string

	
to_tex(text_size='large', table_width=5)

	Write the program information to a .tex file, which can be
rendered to .pdf running pdflatex. The program can then be
printed and brought to the gym.

	Parameters:	
	text_size – The tex text size, e.g. ‘small’, ‘normalsize’, ‘large’, ‘Large’
or ‘LARGE’.

	table_width – The table with of the .tex code.

	Returns:	Program as tex.

	Return type:	string

	
to_txt(verbose=False)

	Write the program information to text,
which can be printed in a terminal.

	Parameters:	verbose – If True, more information is shown.

	Returns:	Program as text.

	Return type:	string

API: Functions

Functions documented here.

Functions modeling reps/intensity mapping

reps_to_intensity

	
streprogen.reps_to_intensity(reps, slope=-4.8, constant=97.5, quadratic=True)

	A function mapping from repetitions in the range 1 to 12
to intensities in the range 0 to 100.

	Parameters:	
	reps – The number of repetitions to map to the intensity range.

	slope – Slope for the linear function.

	constant – Constant for the linear function

	quadratic – If ‘True’, add a slight quadratic offset.

	Returns:	An intensity value in the range from 0 to 100.

	Return type:	intensity

Examples

>>> reps_to_intensity(5, slope = -5, constant = 100, quadratic = False)
80

>>> reps_to_intensity(8, slope = -5, constant = 100, quadratic = True)
67.45

>>> reps_to_intensity(8, slope = -5, constant = 100, quadratic = False)
65

Functions modeling progression

progression_linear

	
streprogen.progression_linear(week, start_weight, end_weight, start_week, end_week)

	A linear progression function going through the points
(‘start_week’, ‘start_weight’) and (‘end_week’, ‘end_weight’), evaluated
in ‘week’.

	Parameters:	
	week – The week to evaluate the linear function at.

	start_weight – The weight at ‘start_week’.

	end_weight – The weight at ‘end_week’.

	start_week – The number of the first week, typically 1.

	end_week – The number of the final week, e.g. 8.

	Returns:	The weight at ‘week’.

	Return type:	weight

Examples

>>> progression_linear(week = 2, start_weight = 100, end_weight = 120,
... start_week = 1, end_week = 3)
110.0

>>> progression_linear(3, 100, 140, 1, 5)
120.0

progression_sinusoidal

	
streprogen.progression_sinusoidal(week, start_weight, end_weight, start_week, end_week, periods=2, scale=0.025, offset=0)

	A sinusoidal progression function going through the points
(‘start_week’, ‘start_weight’) and (‘end_week’, ‘end_weight’), evaluated
in ‘week’. This function calls a linear progression function
and multiplies it by a sinusoid.

	Parameters:	
	week – The week to evaluate the linear function at.

	start_weight – The weight at ‘start_week’.

	end_weight – The weight at ‘end_week’.

	start_week – The number of the first week, typically 1.

	end_week – The number of the final week, e.g. 8.

	periods – Number of sinusoidal periods in the time range.

	scale – The scale (amplitude) of the sinusoidal term.

	offset – The offset (shift) of the sinusoid.

	Returns:	The weight at ‘week’.

	Return type:	weight

Examples

>>> progression_sinusoidal(1, 100, 120, 1, 8)
100.0
>>> progression_sinusoidal(8, 100, 120, 1, 8)
120.0
>>> progression_sinusoidal(4, 100, 120, 1, 8)
106.44931454758678

The RepellentGenerator

RepellentGenerator

	
class streprogen.RepellentGenerator(domain, probability_func=None, generated=None)

	Generates objects from a domain,
each time an object is drawn,
the probability of it being drawn again
is determined by the probability function.

	
__init__(domain, probability_func=None, generated=None)

	Initialize a RepellentGenerator, which is a generator
where when an object is generated, the probability of it
begin generated changes.

	Parameters:	
	domain – A list of objects to generate from, e.g. [1, 2, 3].

	probability_func – A decreasing probability function, e.g. lambda x: 1 / 2**x.

	generated – A user specified dictionary of the form
{element1: num1, element2: num2, ...}
where num1, num2, ... are the initial states descriping how many
times the elements element1, element2, ... have been generated.
This argument changes the initial probability distribution.

	Returns:	A RepellentGenerator object.

	Return type:	RepellentGenerator

Examples

>>> domain = [1, 2, 3]
>>> generator = RepellentGenerator(domain)
>>> generator.generate_one() in domain
True

	
generate_one()

	Generate a single element.

	Returns:	An element from the domain.

	Return type:	element

Examples

>>> generator = RepellentGenerator(['a', 'b'])
>>> gen_item = generator.generate_one()
>>> gen_item in ['a', 'b']
True

	
yield_from_domain(num=1)

	Yield ‘num’ elements from the domain.

	Yields:	A sequence of elements from the domain.

Examples

>>> domain = ['a', 1]
>>> generator = RepellentGenerator(domain)
>>> for element in generator.yield_from_domain(3):
... print(element in domain)
True
True
True

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 streprogen	

Index

 _
 | A
 | D
 | G
 | P
 | R
 | S
 | T
 | W
 | Y

_

 	
 	__init__() (streprogen.Day method)

 	(streprogen.DynamicExercise method)

 	(streprogen.Program method)

 	(streprogen.RepellentGenerator method)

 	(streprogen.StaticExercise method)

A

 	
 	add_days() (streprogen.Program method)

 	
 	add_exercises() (streprogen.Day method)

D

 	
 	Day (class in streprogen)

 	
 	DynamicExercise (class in streprogen)

G

 	
 	generate_one() (streprogen.RepellentGenerator method)

P

 	
 	Program (class in streprogen)

 	
 	progression_linear() (in module streprogen)

 	progression_sinusoidal() (in module streprogen)

R

 	
 	render() (streprogen.Program method)

 	RepellentGenerator (class in streprogen)

 	
 	reps_to_intensity() (in module streprogen)

 	repstring_penalty() (streprogen.Program static method)

S

 	
 	StaticExercise (class in streprogen)

 	
 	streprogen (module), [1]

T

 	
 	to_html() (streprogen.Program method)

 	
 	to_tex() (streprogen.Program method)

 	to_txt() (streprogen.Program method)

W

 	
 	weekly_growth() (streprogen.DynamicExercise method)

Y

 	
 	yield_from_domain() (streprogen.RepellentGenerator method)

 _static/up-pressed.png

_static/comment-bright.png

_images/jupyter_notebooks_advanced_22_0.png
13

Scale factors for repetitions and intensities

— reps
—o- intensities

_static/minus.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down.png

_static/streprogen_logo.png
VIW

_images/jupyter_notebooks_advanced_13_0.png
Intensity

100

Relationship between repetitions and intensity

—o— intensities_norm
~o~ intensities_custom
—o~ intensities_custom2

3 H »)
Repetitions

_images/jupyter_notebooks_advanced_8_0.png
Intensity
5 88 3 88

100

Relationship between repetitions and intensity

—o— intensities_norm
—o~ intensities_relaxed
—o— intensites_tight

1] 3 H »]
Repetitions

_images/jupyter_notebooks_advanced_18_0.png
Max weight
5 B E 8

5

Progression models compared

—*~ weignt linear
~o~ veight_sine

Week

nav.xhtml

 Table of Contents

 		Streprogen Documentation

 		Getting started

 		Minimal working example

 		Using dynamic exercises

 		Several days

 		A realistic program

 		Advanced usage

 		Examine the available rep to intensity mappings

 		Plotting the rep to intensity mappings

 		Plotting the rep to intensity mappings

 		Creating a new rep to intensity mapping

 		Examine the available progression models

 		A plot of the available progression models

 		Scale reps and intensities

 		API: Classes

 		Brief introduction to classes

 		The DynamicExercise class

 		The StaticExercise class

 		The Day class

 		The Program class

 		API: Functions

 		Functions modeling reps/intensity mapping

 		reps_to_intensity

 		Functions modeling progression

 		progression_linear

 		progression_sinusoidal

 		The RepellentGenerator

 		RepellentGenerator

_static/down-pressed.png

_static/comment.png

_static/plus.png

